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Abstract  This paper is concerned with the dynamical properties of deterministically
modeled chemical reaction systems with mass-action kinetics. Such models are ubig-
uitously found in chemistry, population biology, and the burgeoning field of systems
biology. A basic question, whose answer remains largely unknown, is the following:
for which network structures do trajectories of mass-action systems remain bounded
in time? In this paper, we conjecture that the result holds when the reaction network
is weakly reversible, and prove this conjecture in the case when the reaction network
consists of a single linkage class, or connected component.

Keywords Weakly reversible - Bounded trajectories - Chemical reaction network
theory - Mass-action kinetics

1 Introduction

Building off the work of Fritz Horn, Roy Jackson, and Martin Feinberg [8-10, 12—14]
the mathematical theory termed “Chemical Reaction Network Theory” has, over the
past 40 years, determined many of the basic qualitative properties of chemical reaction
networks and, more generally, models of population processes. As the exact values
of key system parameters, termed rate constants and which we will denote by «y,
are usually difficult to find experimentally and, hence, are oftentimes unknown, the
results tend to be independent of the values of these parameters. In large part moti-
vated by the Global Attractor Conjecture [6], much of the recent attention in this field
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has focussed on which network structures guarantee that trajectories are persistent, in
that they can not approach the boundary of the positive orthant along a sequence of
times [1-4,6,7,15-17]. In this paper we consider a related question: for which net-
work structures do trajectories of mass-action systems necessarily remain bounded in
time? This question is similar to that of persistence in that both force us to consider
extreme behaviors of the species, and, hence, the monomials of the dynamical system.
Similar to the well known Persistence Conjecture (see below), we will conjecture that
all trajectories of weakly reversible systems with mass-action kinetics are bounded in
time. We will prove this conjecture in the case when the reaction network consists of
a single linkage class, or connected component. The methods used in this paper are
similar to those introduced in [1], where the Global Attracor Conjecture was shown
to hold in the single linkage class case.

1.1 Formal statement of the problem

Two of the most basic questions that can be asked about a mathematical model for
a chemical, or more generally a population, process are (i) must all trajectories be
bounded in time and (ii) are trajectories persistent in the sense of Definition 1.1
below.

Definition 1.1 For ¢+ > 0 denoting time, let ¢ (¢, xo) be a trajectory to a dynamical
system in RY with initial condition xq. A trajectory ¢ (¢, xo) with state space RQ’O is
said to be persistent if

lim inf ¢; (¢, x9) > 0,
t—0o0

for all i € {1,..., N}, where ¢;(t, xo) denotes the ith component of ¢(z, xg).
A dynamical system is said to be persistent if each trajectory with non-negative initial
condition is persistent.

Thus, persistence corresponds to a non-extinction requirement. Some authors refer
to dynamical systems satisfying the above condition as strongly persistent [20]. In their
work, persistence only requires the weaker condition that lim sup,_, o, ¢; (¢, xo) > 0
foreachi € {1,..., N}.

The following conjecture of Feinberg (see Remark 6.1.E in [9]) is one of the most
well known in chemical reaction network theory. It pertains to systems whose reaction
networks are weakly reversible, or strongly connected (see Sect. 2), and is intimately
related to the Global Attractor Conjecture [6].

Persistence Conjecture (Version 1). Any weakly reversible reaction network with
mass-action kinetics is persistent.

In [1], it was pointed out that there are really two natural conjectures pertaining to
weakly reversible reaction networks with mass-action kinetics, and that these should
be separated.
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Definition 1.2 For ¢+ > 0 denoting time, let ¢ (¢, xo) be a trajectory to a dynamical
system in RY with initial condition xo. A trajectory ¢ (¢, xo) is said to be bounded if

lim sup |¢ (¢, xg)| < o0.
—>00

A dynamical system is said to have bounded trajectories if each trajectory is bounded.

Persistence Conjecture (Version 2). Any weakly reversible reaction network with
mass-action kinetics and bounded trajectories is persistent.

Boundedness Conjecture. Any weakly reversible reaction network with mass-action
kinetics has bounded trajectories.

Clearly, the latter two conjectures would imply the first, which would then imply the
well known Global Attractor Conjecture (see [6,9]). Note that none of the conjectures
make any assumptions on the choice of rate constants, which are the natural parame-
ters found in these systems (see Sect. 2). The Boundedness Conjecture stated above is
quite similar to the Extended Permanence Conjecture found in [7], which conjectures
that all “endotactic” systems (which include those that are weakly reversible) are per-
manent. Permanence is an even stronger condition than bounded trajectories in that all
trajectories of a compatibility class (invariant manifold), regardless of initial condition,
must enter a single compact subset of Rgo. The Extended Permanence Conjecture is
proven in [7] in the case when the system is two-dimensional. In Sect. 3.2 we briefly
discuss permanence and conclude that weakly reversible, single linkage class systems
are permanent if there is a § > 0 for which lim inf;_, o ¢; (#, x9) > & for all x¢ and all
i. That is, when the system is, in some sense, uniformly persistent.

Each of the above mentioned conjectures remains open. In recent years there has
been a great amount of energy aimed at resolving the Persistence Conjecture, and
typically that work has focused on Version 2. This focus has been quite natural as
much of the motivation for the work stemmed from consideration of “complex-bal-
anced” systems, see [8,9], which are known to have bounded trajectories. Relatively
little attention has been paid, therefore, to the related Boundedness Conjecture, as
formally stated above. We will refrain from giving an exhaustive background on the
work aimed at resolving the Persistence Conjectures, and instead point the interested
reader to [1], where such an introduction, including most of the relevant references
related to persistence and the Global Attractor Conjecture, can be found.

1.2 Results in this paper

In this paper we will prove that the Boundedness Conjecture holds for all systems
whose network consists of a single linkage class, or connected component (see Sect. 2).
To prove our results, we will use a method, introduced in [1], for partitioning the rel-
evant monomials of the dynamical system along sequences of trajectory points into
classes with comparable growths. This will allow us to prove that there is a Lyapunov
function which decreases along all paths when |x(7)] is sufficiently large.

We will prove all of our results in a slightly more general setting than mass-action
kinetics in that we will allow our rate “constants” to actually be bounded functions

@ Springer



2278 J Math Chem (2011) 49:2275-2290

of time. Results pertaining to systems with such a generalized mass-action kinetics
are useful as these systems arise naturally when a system with standard mass-action
kinetics is projected onto a subset of the species (see Sect. 3 of [1]).

The outline of the paper is as follows. In Sect. 2, we provide a review of the req-
uisite definitions and terminology from chemical reaction network theory. In Sect. 3,
we give our main results together with their proofs.

2 Preliminary concepts and definitions

Most of the following definitions are standard in chemical reaction network theory.
The interested reader should see [8] or [11] for a more detailed introduction.

Reaction networks. An example of a chemical reactionis 251+ S — 3, where we
interpret the above as saying two molecules of type S; combine with a molecule of type
S, to produce a molecule of type S3. For now, assume that there are no other reactions
under consideration. The S; are called chemical species and the linear combinations
of the species found at either end of the reaction arrow, namely 257 + S> and S3, are
called chemical complexes. Assigning the source (or reactant) complex 287 + S, to
the vector y = (2, 1, 0) and the product complex S to the vector y' = (0, 0, 1), we
can formally write the reaction as y — y'.

In the general setting we denote the number of species by N, and fori € {1, ..., N}
we denote the ith species as S;. We then consider a finite set of reactions with the kth
denoted by yx — y;, where y, y; € Zgo are (non-equal) vectors whose components
give the coefficients of the source and product complexes, respectively. Using a slight
abuse of notation, we will also refer to the vectors y; and y,’C as the complexes. Note
thatif y; = 0 or V= 0 for some k, then the kth reaction represents an input or output,
respectively, to the system. Note also that any complex may appear as both a source
complex and a product complex in the system. We will usually, though not always
(for example, see condition 3 in Definition 2.1 below) use the prime ’ to denote the
product complex of a given reaction.

As an example, suppose that the entire network consists of the two species S| and
S> and the two reactions

Sl — Sz and Sz — S], (1)
where S1 — §7 is arbitrarily labeled as “reaction 1.” Then N = 2 and
yi=(1,0), yy=@,1) and y;=(0,1), y,=(1,0).

Thus, the vector (1, 0), or equivalently the complex Si, is both yj, the source of the
first reaction, and yj, the product of the second.

For ease of notation, when there is no need for enumeration we will typically drop
the subscript k from the notation for the complexes and reactions.

Definition 2.1 Let S = {S;}Y,, C = {y} with y € ZY, and R = {y — '} denote
finite sets of species, complexes, and reactions, respeEtively. The triple {S,C, R} is
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called a chemical reaction network so long as the following three natural requirements
are met:

1. Foreach S; € S, there exists at least one complex y € C for which y; > 1.
2. There is no trivial reaction y — y € R for some complex y € C.
3. Forany y € C, there must exista y’ € C for whichy -y e Rory — y e R.

Notation: We will use each of the following choices of notation to denote a complex
fromC:y, y', yi, ¥j. Yk, Y. etc. However, there will be other times in which we
wish to denote the ith component of a complex. If the complex in question has been
denoted by yx, then we will write yi ;. However, if the complex has been denoted by y,
then we would write its ith component as y;, which, through context, should not cause
confusion with a choice of complex y;. See, for example, condition 1 in Definition 2.1
above.

Definition 2.2 To each reaction network {S, C, R} we assign a unique directed graph
called a reaction diagram constructed in the following manner. The nodes of the graph
are the complexes, C. A directed edge (y, y') exists if and only if y — y’ € R. Each
connected component of the resulting graph is termed a linkage class of the graph.

For example, the system described in and around (1) has reaction diagram S; = Sy,
which consists of a single linkage class.

Definition 2.3 Let {S, C, R} denote a chemical reaction network. Denote the com-
plexes of the ith linkage class by L; C C. Wesay T' C C consists of a union of linkage
classes if T = U;¢rL; for some nonempty index set /.

Definition 2.4 The chemical reaction network {S, C, R} is said to be weakly revers-
ible if each linkage class of the corresponding reaction diagram is strongly connected.
A network is said to be reversible if y — y € R whenever y — y’ € R.

It is easy to see that a chemical reaction network is weakly reversible if and only if
for each reaction y — y’ € R, there exists a sequence of complexes, yi, ..., y, € C,
suchthat y - yje R, y1 > me€R, - ,y-1 >y €R,andy, —> y € R.

Dynamics. A chemical reaction network gives rise to a dynamical system by way
of a rate function for each reaction. That is, for each yy — y; € R, or simply
k € {1,...,|R|}, we suppose the existence of a function Ry = R, _, v that deter-
mines the rate of that reaction. The functions Ry are typically referred to as the kinetics
of the system and will be denoted by IC, or K(¢) in the non-autonomous case. The
dynamics of the system is then given by the following coupled set of (typically non-

linear) ordinary differential equations

£(6) =D Re(x(®), (v — %), )
k

where k enumerates over the reactions and x (¢) € RQO is a vector whose i th component
represents the concentration of species S; at time ¢ > 0.
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Definition 2.5 A chemical reaction network {S,C, R} together with a choice of
kinetics K is called a chemical reaction system and is denoted via the quadruple
{S,C, R, K}. In the non-autonomous case where the Ry can depend explicitly on
t, we will write {S, C, R, K(t)}. We say that a chemical reaction system is weakly
reversible if its underlying network is.

Integrating (2) with respect to time yields

t
(1) = x©O) + > (/0 Ric(x(s), s)ds) O = 30)-
k

Ry for all time.

.....

Definition 2.6 The stoichiometric subspace of a network is the linear space S =
span{y; — Yi}ke(1,...,/R)}- The vectors y, — yi are called the reaction vectors.

Under mild conditions on the rate functions of a system, a trajectory x(¢) with
strictly positive initial condition x(0) € RQ’O remains in the strictly positive orthant
RQD for all time (see, for example, Lemma 2.1 of [18]). Thus, the trajectory remains
in the relatively open set (x(0) + S) N RQ’O, where x(0) + S ;= {z e RN | z =
x(0) + v, for some v € S}, for all time. In other words, this set is forward-invariant
with respect to the dynamics. It is also easy to show that under the same mild condi-
tionson Rg, (x(0)+S)N RQ]O is forward invariant with respect to the dynamics. The
sets (x(0) + S) N Ri’o will be referred to as the positive stoichiometric compatibility
classes, or simply as the positive classes. Note that if each of the sets (x(0) 4+ .S) N RQ’O
is bounded, then all trajectories of the dynamical system are necessarily bounded
also. Therefore, the results of this paper are of interest when each positive class is an
unbounded set.

The most common kinetics is that of mass-action kinetics. A chemical reaction
system is said to have mass-action kinetics if all rate functions Ry = R, _, v take the
multiplicative form

Yk, 1 Vk,2 Yk,N
Ri(x) = kpxy™ x5 "o xy 3)

where «j is a positive reaction rate constant and y, is the source complex for the
reaction. For u € RQ’O and v € RV, we define

v def o v) UN
_Ml ...uN’

where we have adopted the convention that 09 = 1, and the above is undefined if u ;i =0

when v; < 0. Mass action kinetics can then be written succinctly as Ry (x) = kyx*.
Combining (2) and (3) gives the following system of differential equations

£(1) =D kex (0 (v — yi)- )
k
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We will generalize the Eq. (4) slightly by allowing each «j to be a bounded function
of time. See Definition 2.6 in [7] for a similar definition, and [5] for another recent
treatment of chemical reaction systems with non-autonomous dynamics.

Definition 2.7 We say that the non-autonomous system {S, C, R, K(¢)} has bounded
mass-action kinetics if there exists an n > 0 such that for each k € {1, ..., |R|}

Ri(x, 1) = ki (1)x,

where n < kx(t) < 1/n for all t > 0. Hence, the vector of concentrations satisfies

£(1) =D ke (Ox (0 (3 — w0
k

We require some final notation. Let v € RY for some N > 1, and let U C
{1,..., N}. We write U[j] for the jth component of U. We then write v|y to denote
the vector of size |U| with

def
vly,j = (Wly)j = vy

for j € {1,...,|U|}. Thus, v|y simply denotes the projection of v onto the com-
ponents enumerated by U. For example, if N = 8 and U = {2, 4, 7}, then for any
veRS, vy = (v2, v4,v7) € R,

3 Main results

Recall that for any vectors u, v such that u € Rfo and v € RY we define u¥ =

u'l” e u}’vN , where we use the convention 0° = 1. For completeness, we recall the
following standard definition.

Definition 3.1 For any set C, we say {7;} is a partition of C if each 7; is non-empty,
U;Ti =C,andforalli # j, T;NT; =¢.

The following combination of Definition 3.2 and Lemma 3.3 is a generalization of
Definition 4.1 and Lemma 4.2 found in [1]. While the generalization is not made use
of in the current paper, we hope that pointing out that the function f below can be
nearly arbitrary will be beneficial in future work.

Definition 3.2 Let C denote a finite set of vectors in RV. Let x, € RY denote a
sequence of points. For D ¢ RN with {x,} € D,let f : D x C — R.(. We say that
C is partitioned along the sequence {x,} with respect to f if there exists a partition,
{T; }iP=1’ of C, where the T; are termed tiers, and a constant C > 1, such that

(i) ifyj, y € T; forsomei € {1, ..., P}, then for all n

1
Ef(xnv Vi) = fxns yi) < Cf (xn, yj).
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(ii) if y; € T; and yx € T;y,, for some m > 1, then

S n,s Yj)
S s yi)

— 00, asn — o0.

When f(x, y) = x”, the case considered in both this paper and [1], we will simply
say that C is partitioned along {x,}.

Note that we have a natural ordering of the tiers: 71 > T> > T3 > --- > Tp, and
we say T is the “highest” tier, whereas Tp is the “lowest” tier.

The proof of the following lemma is a slight modification of the proof of Lemma
4.3 in [1] and is omitted.

Lemma 3.3 Let C denote a finite set of vectors in RN . Let x,, be a sequence of points
in Ri\]o. For D RN with {x,} € D, let f : D x C — R.(. Then, there exists a
subsequence of {x,} along which C is partitioned with respect to f.

The following lemma, which is similar in spirit to Farkas’ Lemma, states that for
any set of vectors in RV, either their span includes a non-zero vector in the non-positive
orthant Ri’o, or there is vector normal to their span that intersects the strictly positive
orthant.

Lemma 3.4 (Stiemke’s Theorem, [19]). Fori = 1, ..., n, let u; € R™. Either there
exists a ¢ € R" such that

n
(Zciui) <0, j=1,....m
i=1 j

and such that at least one of the inequalities is strict, or there is a w € R, such that
w-u; =0foreachi € {1,...,n}

Corollary 3.5 Fori = 1,...,n, letu; € R™". Let U C {l,...,m}and V = U°.
Either there exists a ¢ € R" such that

n

(ZC,‘M,‘) <0, jelU
i=1 j
n

(Zciui) >0, jeV
i=1 j

and such that at least one of the inequalities is strict, or there is a w € R™ with

w;j >0 forjelU
wj <0 forjeV

such that w - u; = 0 foreachi € {1, ..., n}.
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Proof Define the vector valued function 6 : R™ — R via

Ou); = —uj ifjeV’

Applying Lemma 3.4 to the set of vectors 6 (u;) proves the result. O

Definition 3.6 Let w € RV. The set {i € {I,...,N} : w; > 0} is called the
positive support of w and the set {i € {1,..., N} : w; < 0} is called the nega-
tive support of w. The union of the positive and negative support of w, i.e. the set
{i e{l,..., N} : w; # 0}, is called the support of w.

Definition 3.7 LetC denote a finite set of vectors in R". Let {7;} denote a partition of
C.LetU,V C{1,..., N} with U UV nonempty. We will say that the vector w € RN
is a conservation relation that respects the triple (U, V,{T;}) if the following two
conditions hold:

1. U is the positive support of w and V is the negative support of w.
2. Whenever y;, y; € T; for some i, we have that w - (y; — y¢) = 0.

Definition 3.8 Let x, € Ri’o denote a sequence of points. We say that x,, is par-
tially monotonic if x,; > x,41,; for each i for which liminf, . x,; = 0 and if
Xpn,j < Xpy1,; for each j for which lim sup,,_, ., x, ;j = o0.

Note that Definition 3.8 stands silent on the behavior of those j for which 0 <
liminf, o0 X, j < limsup,_, o, Xn,j < 00.

Theorem 3.9 Let C denote a finite set of vectors in RN, Let x,, € ]RLVO denote a par-
tially monotonic sequence of points for which lim,_, o x, ; € {0, 0o} for at least one
ie{l,...,N}. Let

U= {l € {17,N} : lim Xn,i :O}
n—oo
v=liet N dim = oo).
n—o0
Finally, suppose that C is partitioned along {x,} with tiers T;, fori = 1, ..., P, and

constant C > 0. Then, there is a conservation relation w € RY that respects the triple
W, VATH.

Proof We suppose, in order to find a contradiction, that there is no conservation rela-
tion that respects the triple (U, V, {T;}). Define the sets W; C RN fori=1,..., P,
and W c RY via

P
Wi Z{y; —w eRY |y men), weJw,
i=1

and denote the elements of W by {uy}. Note that if 7; consists of a single element, then
W; consists solely of the zero vector. Letm = |U U V| > 0 be the number of elements
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in U UV and let W|yuy C R™ be the restriction of W to the components associated
with the index set U U V, as discussed at the end of Sect. 2. Denote the elements of
Wlyuv by {vi}. Thus, collecting terminology, uy € R¥, whereas v; € R™, and for
each uy € W, thereis a corresponding vy € W|yyy for which uy|yuy = vk, however,
the mapping -|yuy need not be injective.

The set W|yyy must contain at least one nonzero vector because otherwise any
non-negative vector with support U UV would be a non-negative conservation relation
that respects the triple (U, V, {T;}), but we have assumed that no such relation exists.

Because we have assumed there is no conservation relation that respects the triple
(U, V,{T;}), we may conclude by Corollary 3.5 that there exist ¢y € R such that

> aw| =0, ifjeu

veWlyuv

> aw| =0, ifjev,

veWlyuv j

and such that the inequality is strict for at least one j € U U V.
For vy € W|yuy, let m; denote the number of vectors of W that reduced to it.
Define the function M : RY — R by

M@ E | T (e)*™ |,

ureWw
where ¢ and my are chosen for uy € W if ux|yuy = vr € Wlyuy. Note that, by
construction and by the definition of partitioning along a sequence, if uy € W, then

there are y;, y¢ € T; for some i, such that uy = y, — y; and

e

1 X

—<xuk=L<C

c-m T s
Xn

for all n > 1. Therefore, M (x,) is uniformly, in n, bounded both from above and
below. Noting that each x,, has strictly positive components, we may take logarithms
and find

In(M(x,)) = Z:T];uk nx,, ©6)

urew

where for a vector u € RY ) we define

def

In(u) € (nuy), ..., In(uy)).
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Expanding Eq. (6) along elements of U U V and (U U V)€ yields,

M) = | D awly | W@l + [ D avwly | InGalv)
v eWlyuv v eWlyuv
Ck
+ Z ikl wovye In(xnl@wuvye). N
ureWw k

By construction, x, ¢ is bounded from both above and below for £ € (U U V). Thus,
the final term in (7) is bounded from above and below. By the inequalities in (5),
where at least one term is strict, and the facts that x,; — 0 for each i € U and
Xxp,; — oo for each j € V along this subsequence, we may conclude that the sum of
the first and second term, and hence In(M (x,)) itself, is unbounded towards positive
infinity as n — oo. This is a contradiction with the previously found fact that M (x;,)
is uniformly bounded above and below, and the result is shown. O

3.1 Bounded trajectories in the single linkage class case

Define V| : RQ’O — R>o by

N
Vi) =D [zi(in(z) — 1) + 1. ®)

i=1

This is the standard Lyapunov function of chemical reaction network theory where we
have chosen X = (1, ..., 1) [8,11]. Note that VVj(x) = In x. It is straightforward to
show that V] is convex with a global minimum of zero at (1, .. ., 1) [8]. The following
is a generalization of Lemma 4.7 in [1].

Lemma 3.10 Ler {S,C, R, K(t)}, with S = {S1, ..., Sy}, be a weakly reversible,
non-autonomous mass-action system with bounded kinetics. Let D C Rgo. One of the
following two conditions holds:

C1: There existsan M > 0, such that for any x € D for which x; > M orx; < 1/M
for at least one i € {1, ..., N}, we have

Zxk(l‘)xyk Oy — y) -In(x) <0, forallt > 0.
k

C2: There exists a sequence of points x,, € D for which lim,_, » x,,; € {0, oo} for
at least one i and
(i) C is partitioned along x,, with tiers {T,-}le, and constant C, and
(ii) T consists of a union of linkage classes.
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Proof We suppose condition C'1 does not hold, and will conclude that condition C2
must then hold. Because condition C1 does not hold, there is a sequence of points
Xp € D and times t, > 0 for which lim,_, o x,; € {0, oo} for at least one i and

D)X (3 — yi) - In(xg) = 0. ©)
k

Applying Lemma 3.3, we partition the complexes along an appropriate subsequence
of {x,} with tiers T;, i = 1, ..., P, and constant C > 1. Note that this also had the
effect of only considering the analogous subsequence of {#,}.

In the following, for tieri € {1, ..., P}, we denote by

{i — i} all reactions with both source and product complex in 7;,
{i — i 4+ m} all reactions with source complex in 7; and product complex in 7;

form > 1,

e {i — i —m} all reactions with source complex in 7; and product complex in 7;_,,
form > 1.

Defining u/v = (ur/vi,...,un/vy) foru,v e RQ/ , we re-write the left hand side

of the inequality (9)

P i
) X
D k() (v = ) InCon) = 3| D7 ket In | S5 (10)
k n

i=1| {i—i}

P—i
X
+2, 2 amtn| S an

m=1{i—i+m}

i—1
X
+2, 2 kst | =

m=1{i—i—m}

Note that, by construction, for large enough n any component in the enumeration

(11) is negative, and, in fact, ln(x;‘,yk /x,{k) — —o00 as n — 00, for these terms. The
proof that the total summation above (that is, the left hand side of (10)) must also, for
large enough n, be strictly negative unless condition C2 holds is now identical to the
analogous portion of the proof of Lemma 4.7 in [1], and is omitted here. O

Lemma 3.11 Let {S,C, R}, with S = {S1, ..., Sy}, be a single linkage class chem-
ical reaction network. Then, there does not exist a sequence of points x, € Ri’o, all
in the same stoichiometric compatibility class, for which lim, . x,,; € {0, oo} for

at least one i and

(i) C is partitioned along x, with tiers {T; }le, and constant C, and
(ii) T consists of a union of linkage classes.

Proof Note that in the one linkage class case 77 can only consist of a union of linkage
classes if 77 = C. We suppose, in order to find a contradiction, that there is a sequence,
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{xn}, all in the same stoichiometric compatibility class, for which lim, . x,; €
{0, oo} for at least one i and

(i) C is partitioned along x,, with tiers {T; }l.le, and constant C, and
(ii) T consists of a union of linkage classes.

Perhaps after restricting ourselves to a sub-sequence, we may choose x,, to be partially
monotonic (recall Definition 3.8). Let

U:{ie{l,...,N}: lim xn,,:o}
n—0o0

VZ{JE{L,N} lim xn,]:oo}

n— o0

Note that U U V is nonempty by construction. By Theorem 3.9 there is a conservation
relation w € Rgo that respects the triple (U, V, {T;}).

Foreach j € V, w; < 0and x, ; — oo. Thus, if V is nonempty, w - x, — —00,
as n — oo. If V is empty, then U is necessarily nonempty and, by construction,
w-x, — 0,asn — oo. However, because 71 = C, we have that w - (y,’( — yx) = 0 for
all yy — y; € R.Thus, as the x,, are all in the same stoichiometric compatibility class,
we have that w - x, is a constant. This shows that we can not have w - x, — —o0,
as n — o0, and so V must be empty. However, by our construction we may then
conclude that w; > O for all i, and w; > O for at least one i. Hence, w - x, > 0, and
not zero. O

‘We now have our main result.

Theorem 3.12 Let{S,C, R, K(t)}, withS = {Sy, ..., Sy}, be a single linkage class,
weakly reversible, non-autonomous mass-action system with bounded kinetics. Then,
limsup,_, o, |¢(t, x0)| < oo for each xo € ]R;VO. That is, the system has bounded
trajectories.

Proof Letting D be a non-empty positive stoichiometric compatibility class, in the

statement of Lemma 3.10, we conclude by combining Lemmas 3.10 and 3.11 that
there is an M > 0 so that for any x € D with |x| > M, we have

Zick(t)xyk vy — y) -In(x) <0, forallz > 0.
k

Therefore,

%Vﬂcb(t,m)) <0, 12)

whenever ¢ (¢, xo)| > M. Let By, = sup{Vi(x) : |x| = M or x = x¢}. Inequality

(12) shows that Vi (¢ (t, x0)) < By, for all + > 0, which when combined with the fact
that Vi (x) — oo as x| — oo, proves the result. O
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3.2 Permanence

Note that Lemma 3.10 and, in particular, Eq. (12) do not give a rate at which V| is
decreasing. Hence, we can not conclude in general that all trajectories contained within
a given stoichiometric compatibility class enter a single compact subset of RQ’O. That
is, we can not conclude that trajectories are permanent in the sense of Definition 3.13
below. This is quantified above by the explicit dependence of By, upon x. However,
we may strengthen our results slightly.

Definition 3.13 For ¢ > 0 denoting time, let ¢ (¢, xo) be a trajectory to a dynamical
system in RY with initial condition xo. The system is said to be permanent if there is
a p > 0 such that for every xg € ]RQO,

p < liminf ¢; (¢, xo) < limsup ¢; (¢, x9) < 1/p
11— 00

11— 00
foralli € {1,...,N}.

Lemma 3.14 Ler {S,C, R, K(t)}, with S = {S1, ..., Sy}, be a weakly reversible,
non-autonomous mass-action system with bounded kinetics. Let D C RQ/O be such
that dist(D, B]R];’O) > §, for some § > 0. One of the following two conditions holds:

Cl: For any € > 0, there exists an M = M. s > 0 such that for any x € D with
x| > M, we have

Zlck(t)xy" (e — y) - In(x) < —€, forallt > 0.
k

C2: There exists a sequence of points x, € D that satisfies lim,_, » |x,| = 00 and
(i) C is partitioned along x,, with tiers { T,~}f:1, and constant C, and
(ii) T consists of a union of linkage classes.

Proof The proofis essentially the same as for Lemma 3.10. We first suppose condition
C1 does not hold. Let € > 0. By our assumption, there must be a sequence of points
X, € D and times t,, > 0 such that lim,,_,  |x,| = oo and

D lt)x (v — yi) - In(xa) = —e.
k

The proof is now exactly the same as for Lemma 3.10, except that you recognize that
forany y € Tj, we necessarily have that x; — 0o, asn — o0o. Therefore, the terms in
the summation in (11) not only dominate the others, but force the expression to —oo
as n — 0o, thereby concluding the proof. O

Corollary 3.15 Let{S,C, R, K(¢)}, withS = {Si, ..., Sn}, be asingle linkage class,
weakly reversible, non-autonomous mass-action system with bounded kinetics. Let P
be a positive stoichiometric compatibility class and suppose there is a § > 0 so that

1itminf¢>i(t,xo) > 38, forallie{l,...,N}andall xo € P.
—00
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Then, there is a p > 0 such that for any xo € P
o < liminf ¢; (¢, xo) < limsup ¢;(t,x9) < 1/p
[—00 1—00

foralli € {1,..., N}. That is, the system is permanent.

Proof The lower bound follows by our assumption. The upper bound follows from
Lemmas 3.14 (with D equal to P restricted to those x a distance of at least § away
from the boundary), 3.11, and similar arguments as in the proof of Theorem 3.12. The
only real difference in the proof is that the analog of Eq. (12) is

%V1(¢>(t, X0)) < —€,

whenever |¢ (f, x0)| > M, giving us the needed force to guarantee |¢ (¢, xo)| decreases
below some 1/p. O

Note that the M = M. s > 0 of Lemma 3.14, and hence in the proof of Corol-
lary 3.15, explicitly depends upon §. Therefore, it is not sufficient in the statement
of Corollary 3.15 to assume the existence of a different 6 = 6,, > 0 for each xo.
Thus, the main results of [1] pertaining to weakly reversible networks (with arbitrary
deficiency) are not strong enough to guarantee permanence using the above methods.
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